The influence of mesoscale porosity on cortical bone anisotropy. Investigations via asymptotic homogenization.

نویسندگان

  • William J Parnell
  • Quentin Grimal
چکیده

Recently, the mesoscale of cortical bone has been given particular attention in association with novel experimental techniques such as nanoindentation, micro-computed X-ray tomography and quantitative scanning acoustic microscopy (SAM). A need has emerged for reliable mathematical models to interpret the related microscopic and mesoscopic data in terms of effective elastic properties. In this work, a new model of cortical bone elasticity is developed and used to assess the influence of mesoscale porosity on the induced anisotropy of the material. Only the largest pores (Haversian canals and resorption cavities), characteristic of the mesoscale, are considered. The input parameters of the model are derived from typical mesoscale experimental data (e.g. SAM data). We use the method of asymptotic homogenization to determine the local effective elastic properties by modelling the propagation of low-frequency elastic waves through an idealized material that models the local mesostructure. We use a novel solution of the cell problem developed by Parnell & Abrahams. This solution is stable for the physiological range of variation of mesoscopic porosity and elasticity found in bone. Results are computed efficiently (in seconds) and the solutions can be implemented easily by other workers. Parametric studies are performed in order to assess the influence of mesoscopic porosity, the assumptions regarding the material inside the mesoscale pores (drained or undrained bone) and the shape of pores. Results are shown to be in good qualitative agreement with existing schemes and we describe the potential of the scheme for future use in modelling more complex microstructures for cortical bone. In particular, the scheme is shown to be a useful tool with which to predict the qualitative changes in anisotropy due to variations in the structure at the mesoscale.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

To what extent can cortical bone millimeter-scale elasticity be predicted by a two-phase composite model with variable porosity?

An evidence gap exists in fully understanding and reliably modeling the variations in elastic anisotropy that are observed at the millimeter scale in human cortical bone. The porosity (pore volume fraction) is known to account for a large part, but not all, of the elasticity variations. This effect may be modeled by a two-phase micromechanical model consisting of a homogeneous matrix pervaded b...

متن کامل

The relative influence of apatite crystal orientations and intracortical porosity on the elastic anisotropy of human cortical bone.

Elastic anisotropy exhibits spatial inhomogeneity in human cortical bone, but the structural origins of anatomic variation are not well understood. In this study, the elastic anisotropy of human cortical bone was predicted using a specimen-specific multiscale model that investigated the relative influence of apatite crystal orientations and intracortical porosity. The elastic anisotropy of cort...

متن کامل

Using the gradient of human cortical bone properties to determine age-related bone changes via ultrasonic guided waves.

Bone fragility depends not only on bone mass but also on bone quality (structure and material). To accurately evaluate fracture risk or propose therapeutic treatment, clinicians need a criterion, which reflects the determinants of bone strength: geometry, structure and material. In human long bone, the changes due to aging, accentuated by osteoporosis are often revealed through the trabeculariz...

متن کامل

Towards assessing cortical bone porosity using low-frequency quantitative acoustics: A phantom-based study

PURPOSE Cortical porosity is a key characteristic governing the structural properties and mechanical behaviour of bone, and its quantification is therefore critical for understanding and monitoring the development of various bone pathologies such as osteoporosis. Axial transmission quantitative acoustics has shown to be a promising technique for assessing bone health in a fast, non-invasive, an...

متن کامل

Effect of Voltage Measurement on the Quantitative Identification of Transverse Cracks by Electrical Measurements

Electrical tomography can be used as a structural health monitoring technique to identify different damage mechanisms in composite laminates. Previous work has established the link between transverse cracking density and mesoscale conductivity of the ply. Through the mesoscale relationship, the conductivity obtained from electrical tomography can be used as a measure of the transverse cracking ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the Royal Society, Interface

دوره 6 30  شماره 

صفحات  -

تاریخ انتشار 2009